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The second part of this review deals with the methods of inverse kinetic problem (IKP) 
solving based on generalized descriptions of the process. The application of these methods is 
considered an alternative (for discrimination) approach to IKP solving. It is shown that the 
base of this approach is the methodology of complementarity. Different types of generalized 
descriptions, their merits and their shortcomings are discussed. 

As noted in the first part  of this review, the unambiguous description 
methods reduce the ambiguity of IKP solutions through discrimination by 
applying additional information. This information is regarded as external 
with respect to the data of a particular kinetic experiment, since it is only 
derived within certain assumptions of specific experimental conditions (on 
the distribution of random quantities, process nature, IKP solution proper- 
ties, etc.). The applicability of these assumptions stems from general 
theoretical concepts rather than from the analysis of the kinetic curves 
described. In contrast with the discrimination methodology, the complemen- 
tarity methodology implies the fullest possible use of internal information 
(i.e. that obtained in the particular experiment). Besides the difference in 
the origin of the information used, the complementarity methodology is 
characterized by the description of a process synthesized in the course of 
the IKP solution rather than presented by the a priori se t  "rigid" system of 
formal models. The methodological basis for generalized descriptions, their 
structure and their relationship with the IKP solution are considered in the 
following section. 
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IKP ambiguity from complementarity grounds 

The "fatal" nature of the IKP solution ambiguity within the framework of 
discrimination methodology seems to have been understood most profound- 
ly by Nalimov [1-3]. He noted that it is necessary to give up the search for a 
single best model and "to learn to comprehend the world phenomena, 
provided each of them is specified by a fan of models rather than by a single 
best model" [3]. The concept of "a fan of models", and also the idea [4] that a 
multitude of discriminating models possess a greater descriptive ability than 
any single model does, are the starting points in our understanding of the 
contribution made by the complementarity principle to generalized descrip- 
tions. 

The complementarity nature of the formal models used to describe solid- 
phase processes is detailed in [5]. It should also be noted that complemen- 
tarity arises from the very nature of formal models which are a formal 
mathematical description of idealized real processes. Therefore, any model 
is only able to describe certain properties of a real process common to those 
of an idealized process. In other words, every formal model describes noted 
has remained of model idealization corresponding to the real process. Real 
processes in the general case are intermediate with respect to ideal ones. 
Thus, it is clear that the formal picture of a process can be synthesized from 
the information on its individual features offered by a number of competing 
models. Such a synthesis is methodologically based on the complementarity 
principle, allowing all the variety of descriptions to be considered in terms 
of individual models as reflecting different but equally important features of 
a process. 

The information advantages of the complementarity-based approach 
over those using discrimination are clear and strictly proved [6]. The com- 
prehensive informativity of the complementarity methodology affords a 
more definite description of a process, exhibited in a more accurate descrip- 
tion of the kinetic parameters for the IKP solution. The higher accuracy in 
this case follows directly from the inverse proportion between the error in 
estimating the parameters and the amount of information spent for its es- 
timation [7]. 

The complementarity of formal models offers generalized deseriptions of 
the model type. This is the situation with the ~estak-Berggren approach [8]. 
The generalized description in this method is the product of three power 
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terms. Depending on the exponents, the generalized description may assume 
a form consistent with any of the conventional solid-phase reaction models 
used in kinetics [9, 10]. However, along with the models that apply a 
generalized description of the model type, there are an extensive group of 
methods which use a generalized description of the type of preexponential 
and formal model combination. They rely upon the general equation 

In (da / dT) fl = In [Af(a)] - E / R T  (i) 

where da/dT is the derivative of the nonisothermal kinetic curve; fl is the 
heating rate; A and E are kinetic parameters; R is the gas constant; and T is 
temperature. It is obvious, oneef(a)  is independent of T, that the numerical 
values of parameter E and combination A f(a) can be determined unam- 
biguously. A particular choice of the formal model is required, however, to 
estimate the preexponential factor. The latter varies with the form of the 
model, while the numerical value consisting with their combination is con- 
stunt (in some way, it is the compensational effect of A and f(a)). Such a 
relationship between the preexponential factor and the formal model is 
similar in form to a known uncertainty relation. This indicates, in particular, 
that the preexponential factor and the formal process model in Eq. (1) are 
complementary descriptions. The Piloyan [11] and the entire set of isocon- 
versional [12] methods of kinetic parameter calculation illustrate the 
methods in this group. 

Generalized model-type descriptions 

As already noted, the methods of this group are represented by the 
~estak-Berggren [8] approach using the generalized description of the form 

f (a )  = a" ( 1 -  a)" [ - I n ( 1 - a ) ]  P (2) 

The ~es[ak-Berggren equation, using the model in form (2), is often a 
redundant one, as the three power exponents cannot always be estimated 
from the experimental data, which results in turn in the first kind of am- 
biguity in the IKP solution. Thus, the analysis of Eq. (2) cited in [13] shows 
that no more than one parameter in (2) can be estimated. Our own studies, 
however, indicate that the number of parameters determined in (2) depends 
on the experimental data; two of the three parameters may be estimated 
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within sufficient reliability. The reduced form of (2) (two power exponents) 
is also suggested in [9, 14]. Different procedures to calculate the parameters 
in (2) are offered in [15-17]. 

Equation (2) was applied in [18] in both its complete and reduced forms 
to describe the dehydration of Ba(IO3)2.H20. In all three possible applica- 
tions of (2) in the form with two power exponents, the kinetic parameters 
turned out to be equal (E = 67.8 kJ/mol, In A = 20) and very close to the 
values consistent with these for the complete equation (3) (E = 68.2 kJ/mol, 
lnA = 19.4). In fact, this indicates that the kinetic parameters estimated with 
Eq. (2) in different forms are invariant under a particular form of the 
~estak-Berggren model. The invariance of the kinetic parameters estimated 
within the ~estak-Berggren model is also supported by the coincidence of 
the kinetic parameters estimated using (2) and the Anderson isoeonver- 
sional method [19] in [18] or the Kissinger method [20] in [21], which ignore 
the use of the implicit form of the process model for calculations. The inde- 
pendence of the kinetic parameters in the ~estak-Berggren method of form 
(2) seems to be a criterion for the reliability of the parameters obtained. 
The ~estak-Berggren approach, however, does not always display parameter 
invariance with respect to the form of the model (2) [22]. In this ease, model 
(2) cannot be considered to be an ample generalized description and the 
values of the kinetic parameters cannot be taken as reliable. Nevertheless, a 
comprehensive comparison of the Sestak-Berggren approach with other 
methods based on model discrimination has demonstrated [16] its 
preferability. 

Thus, the ~estak-Berggren approach can be applied to estimate reliable 
kinetic parameters. It should be remembered that, in this case, the reliability 
of the parameters is evidenced by their invariance to the form of Eq. (2). 

The method suggested in [23] is among those using a generalized descrip- 
tion of the model type. It is based on the classes of models rather than on in- 
dividual formal models. Each class represents a two-dimensional subspaee 
in multidimensional space of the functions that are mathematical 
equivalents of conventional models [9, 10]. The idea of two-dimensional 
space underlying the concept of a class of models [23] is ultimately bound 
up with the one to account for the ambiguity of the IKP solution given in 
[24]. It is pointed out there that all linearly-dependent models equally well 
describe one and the same process. It is obvious that the models covered by 
one class [23], two-dimensional space, are linearly related. Therefore, am- 
biguity encountered on choosing individual formal models and due to their 
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linear relationship [24] disappears for the class of models which some 
process can be assigned to. 

It is worth noting that the method based on model classes seems to be in- 
termediate between two methodological approaches to the IKP solution. 
Thus, the method applies generalized descriptions (classes) characteristic of 
the complementarity methodology, but requires that the process be assigned 
to a certain class, i.e. to discrimination, as in the ease with the methodology 
of unambiguous description. Owing to its duality, this method combines the 
advantages of a generalized description and the limitations of discrimina- 
tion. Thus, if some process is assigned to a certain class, then this class is 
unambiguously chosen [23]. If the process is intermediate, which can be es- 
tablished by analysing corresponding relationships [23], its application is 
hindered. The method is therefore advisable to derive qualitative or semi- 
qualitative information. The latter can be used, for instance, to solve the 
problem of the possible mechanistical description of a process by the Av- 
rami-Erofeev or reaction order models, since the model varieties of this type 
are covered by different classes [23]. 

A linear combination of several formal models can be recommended as a 
generalized description [25]. Such a generalized description theoretically 
complies with some process consisting of several parallel reactions with 
close activation energies [26]. Linear combinations have shown [26] that Av- 
rami-Erofeev type formal models can appropriately be substituted by linear 
combinations of formal models of three classes irreducible to one another 
[23] and describing power-law nucleation, interface reaction and diffusion. 
Hence, it follows in particular that, in addition to nucleation, the Avrami- 
Erofeev type models can describe some other complex processes. This 
means in fact that the Avrami-Erofeev model can in some instances possess 
the properties of a generalized description. As noted above, however, wide 
application of this model to describe various processes is problematic. 

The probability spectrum of formal models seems to be more compli- 
cated in its structure than the above generalized descriptions [27]. Involving 
a discrete ordinal-number probability distribution of process description 
using individual formal models, these spectra are in fact a version of the 
idea proposed in [28]. It was noted there that solid-phase processes can 
hardly be described deterministically, and stochastic approaches are re- 
quired for their description. The probability spectra [27] are mainly ad- 
vantageous for their invariance under the experimental conditions if the 
latter do not change the process mechanism. Consequently, the probability 
spectra can be used to control the impact of the experimental conditions on 
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the process behaviour. The limitations [27] primarily in the qualitative na- 
ture of all the information received. 

The above generalized descriptions may include various approximating 
functions such as polynomials [9, 29, 30], splines [9], etc. It should be noted, 
however, that fitting the parameters of the corresponding function used in- 
stead of the formal model of the process is rather an intricate problem, 
whose solution in the general form [29] cannot be obtained without definite 
restrictions. 

A remark concerning the reliability of the numerical values of the kinetic 
parameters obtained will conclude the section concerned with generalized 
descriptions of the model type. We have already noted that the methods of 
this group provide reliable kinetic parameters as geometric characteristics 
of the corresponding kinetic curve. However, the reliability of the 
parameters as the process characteristics is always a problem, as they are 
calculated from one kinetic curve. Thus in the ease of a complex process 
(consisting of parallel stages with different activation energies), a change in 
the heating rate will change the geometry of the kinetic curve and, hence, 
the kinetic parameters. Accordingly, it can be concluded that the invariance 
of kinetic parameters obtained from generalized descriptions of the model 
type under the form of the model is their necessary criterion, their in- 
variance under the heating rate being their sufficient criterion. 

Generalized description of the model.preexponeutial factor combination type 

Here, two versions of the application of combined model-preexponential 
descriptions will be considered. Both use Eq. (1), but the methods applied 
to obtain constant f(a) are different. One group includes the methods of cal- 
culating kinetic parameters from one kinetic curve. In this case, the assump- 
tion off(a)  = eonst is only approximately fulfilled for some a values. The 
other group is based on several kinetic curves. The assumptionf(a) = coust 
may strictly hold for a wide a range. 

Methods based on one kinetic curve 

Let us consider three methods [11, 31, 32] which are formally equivalent 
as they use one and the same kinetic equation (1). The difference between 
them consists in the experimental technique of obtaining the derivative 
kinetic curve (DTA [11], DTG [31]), or in the restrictions imposed on the in- 
terval of transformation degrees for the condition f ( a )  = const to hold. 
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Thus, it is shown that for the Piloyan method [11] the decomposition degree 
interval of 0.05 to 0.8 is admissible. The interval is almost the same (0.02 to 
0.76) for the Fotiev procedure [31]. For the two methods, the activation 
energies calculated by iso- and nonisothermal data agreed in [11, 31]. 

The advantages of the Piloyan method were distinguished in studies on 
the kinetics of glass crystallization [33]. It is pointed out in [34] that this 
method, together with the corresponding analysis, will yield a satisfactory in- 
terpretation of the DTA measurements. It seems interesting to determine 
the power exponent in the Avrami-Erofeev equation as a ratio of the activa- 
tion energy calculated by the Piloyan approach to the isothermal value [35]. 
Papers [36, 37] concern a pure nonisothermal determination of the Avrami- 
Erofeev index, i.e. by comparing Piloyan's activation energy and its isocon- 
versional value. Such an approach, however, was criticized in [35, 38], via 
rejecton of the possibility of non isothermal determination of the Avrami- 
Erofeev index. 

The Piloyan method has been analysed rigorously in [39]. The authors 
found that the errors in the activation energy calculated by this method ex- 
ceed the values cited by 15 to 20 per cent [11]. SpeeificaUy, for experimental 
data consistent with the diffusional models, the relative error in the activa- 
tion energy determination is above 50 per cent, while it is 142 per cent for 
the data obeying the Avrami-Erofeev equation (the power exponent being 
1/3). Further, in the processing of the experimental data by the Piloyan 
method in [40, 41], it was noted that the appropriate relationships used in 
this method [11] are nonlinear. A comparison of the activation energies cal- 
culated by the Kissinger [20] and ~estak-Berggren [8] methods (both using 
generalized descriptions) and the activation energy calculated by the 
Piloyan method has revealed lower values for the latter method, while the 
values obtained by the first two methods are in agreement. 

The criticism concerning the Piloyan method also seems to hold for the 
Fotiev method [31]. Both are limited by a problematic assumption concern- 
ing constant f(a) values in a wide a interval. This limitation may be over- 
come by taking account of the restrictions in [32]. It is suggested there that 
only a plane section of the kinetic curve characteristic of topochemical 
processes be used for calculations. The fair agreement of the activation 
energies calculated in [32] with the isothermal values supports the reliability 
of the method proposed. 

It may therefore be concluded that, in application of the methods of this 
group, account should be taken of the interval of the transformation degrees 
for which kinetic parameters are to be calculated, as the reliability of the 
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values obtained is mostly bound up with the legitimacy of the assumption 
f (a)  = const. Owing to the great errors encountered in the Piloyan method, 
the latter and the Fotiev approach cannot be recommended for the calcula- 
tion of values of the activation energies in a wide range of a. These methods, 
however, can be used to compare the activation energies, if it is sufficient to 
know the relative values. Additionally, all the criticism concerning the use of 
one kinetic curve to calculate kinetic parameters, dwelt on in the previous 
section, fully holds for these methods. 

Methods based on several kinetic curves 

Now consider the well-known methods proposed by Kissinger [20], 
Anderson [19], Friedman [42], Ozawa [43] and Flynn-Wall [44]. All these 
methods except the first one are isoconversional [12], i.e. constant values of 
f (a)  in Eq. (1) (or its integral anamorphosis) are achieved by using tempera- 
ture values for one and the same a value at different heating rates. 

To determine the activation energy, the Kissinger method [20] uses the 
line slope on the coordinates in(~/Tm)-l/Tm where Tm is the temperature 
corresponding to the maximum in the differential curves. Following this 
method, the finite equation is derived on the assumption that it is possible 
to describe the process by the reaction-order model. These are the two fac- 
tors, the use of the temperature consistent with the maximum and the reac- 
tion-order model, that are criticized [45] in this method. Let us dwell upon 
these two factors. 

Strictly speaking, the Kissinger method is not isoconversional, as the 
transformation degree a consistent with the temperature of the maximum 
differential kinetic curve depends on the heating rate [45]. The theoretical 
form of this relationship has been established in [46]. It is found there that 
the greater the activation energy and the value offl, the weaker is the depen- 
dence of am on ft. Thus, at moderate heating rates and activation energies, 
the Kissinger method is practically isoconversional. It is pointed out in [47] 
that, for a process with an activation energy of about 100 kJ/mol and heating 
rates of from 5 to 20 dog/rain, a ranges from 0.56 to 0.61 at random. 

As concerns the limitations of the Kissinger method within the reaction- 
order model whose universal application was argued, its sphere of applica- 
tion is much wider than follows from the model underlying its derivation. As 
noted above, under certain conditions the Kissinger method is practically 
isoconversional. Here, the relationship to determine the activation energy 
( infl /Tm - 1 /Tm ) asymptotically coincides with the relationship used in the 
isoconversional method [48], assuming that no model forms exist. Accord- 

J. Thermal Anal., 3t~ 1990 



VYAZOVKIN, LESNIKOVICH: SOLVING THE INVERSE PROBLEM 607 

ingly, the feasibilities of the Kissinger method are the wider, the greater the 
heating rates used and the activation energies for the process. 

It is worth noting another aspect of the application of the method. In 
[49], the Kissinger method was improved by using the Avrami-Erofeev 
rather than the reaction-order model in it, which resulted, in the final 
analysis, in some transformation of the finite equation. As the Avrami- 
Erofeev model possesses rather a wide descriptive ability [50], the Kissinger 
method, when applied in version [49], will probably expand the field of its 
application as compared with the original version [20]. 

Papers [51-53] note that the Kissinger method provides activation ener- 
gies close to the values obtained with isoconversional methods, which sup- 
ports our opinion concerning its application. In all three cases [51-53], the 
activation energy exceeded 100 kJ/mol. Further, it is found in [54] that use of 
the temperature consistent with a definite transformation degree rather than 
the maximum temperature in the Kissinger method results in the coin- 
cidence of the activation energy estimates obtained by the Kissinger and 
Ozawa methods [43]. The modified version [49] of the Kissinger method is 
dwelt upon in [55, 56]. It is noted in [55] that the activation energy estimates 
obtained are practically the same as in the original Kissinger method. Fair 
agreement of the activation energies and isothermal values is pointed out in 
[56]. Such agreement for the Kissinger method is also found in [57]. Dis- 
agreement between the activation energy estimates found by the Kissinger 
method and the isothermal values is mentioned in [58] and exemplified in 
[45]. It is to be noted, however, that such disagreement is an indispensable 
but insufficient criterion for the imperfectness of the method, as the reasons 
for such an inconsistency may be physical or physico-chemical in nature. 

Thus, it may be concluded that, including the above limitations, the Kis- 
singer method can be applied to calculate the activation energies of a 
process. The sphere of its application, however, is somewhat narrower than 
in the case of the isoconversional methods considered below. 

Consider now four classical isoconversional methods, displaying two dif- 
ferent possible solutions of Eq. (1) either directly in a differential form 
(Anderson [19] and Friedman [42]) or in an integral form (Ozawa [43] and 
Flynn-Wall [44]). As already noted, these methods strive for a constant f(ot) 
by using the data corresponding to the same transformation degree. It 
should be noted that the Anderson and Friedman techniques are equivalent, 
since the line slope on the coordinates lnfl - 1/Ta is used to calculate the ac- 
tivation energy, where a shows that the data stand for one and the same 
transformation degree. In the Ozawa and Flynn-Wall approaches, where the 
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activation energy is determined by the line slope on the coordinates In fl - 
1/T, equivalence is displayed along the same lines. It should also be noted 
that the Ozawa and Flynn-Wall approaches are used more often than the 
Anderson and Friedman methods, as they do not require calculation of the 
derivatives. 

Neither reviews nor monographs, unfortunately, give due attention to the 
isoconversional calculation methods. In [13, 59], the Kissinger method alone 
is mentioned; however, it can be considered isoconversional only under cer- 
tain restrictions. In [60], a comprehensive criticism of the Ozawa method is 
given. Some criticism of this approach can be encountered in [9, 10], 
together with that of other isoconversional methods which state that several 
nonisothermal tests are required to calculate kinetic parameters. An tm- 
favourable attitude to these methods has been displayed in their rare usage. 
Thus, none of the isoconversional methods is included among the seven 
most frequently applied methods [61]. 

Let us endeavour to give an objective consideration of the merits and 
demerits of these methods. Their undoubted merits seem to include the pos- 
sibility of calculating, first, consistent kinetic parameters and, second, 
parameters consistent with isothermal values. Activation energies complying 
with the values obtained by other reseaehers have been found in [58, 62-64]. 
Agreement with isothermal quantities is noted in [65-67], and [67] gives 
nineteen examples of such agreement. These merits make it possible to 
recommend isoconversional methods for the calculation of significant [68] 
activation energy values. 

As concerns the demerits cited in the above works, they can hardly in- 
elude the necessity for several nonisothermal tests [9, 10], because this is 
just the way to perform the reliable estimation of kinetic parameters. At the 
same time, it is truly noted in [60] that the dependence in the coordinates 
In( f l /T z) - 1 /T rather than tb.2t used in the Ozawa approach In fl - 1 /T  should 
be linear. This situation, however, is taken into aecotmt in the isoeonver- 
sional method [48]. The following two disadvantages are more essential in 
the isoconversional methods. One disadvantage is that it is impossible to es- 
timate the preexponential factor without knowing the form of the model. 
The other is due to the infrequently observed dependence of the activation 
energy on the transformation degree. Let us analyse these disadvantages. 

Indeed it is impossible to determine the preexponential factor from the 
generalized description of the preexponential factor-formal model system 
type [60, 69], to say nothing that the feasibility of such a determination con- 
tradicts the complementary nature of the generalized description corn- 
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ponents. In this case, the preexponential factor values calculated for various 
models are different by several orders. The discrimination, so far criticized, 
yields an ambigous solution, and therefore seems to be unsuitable. The ad- 
missibility of different averagings in estimating the preexponential factor 
[43, 70] can hardly be justified, as the mean can only be estimated from 
among a series of uniform quantities. It is difficult to say to what degree 
preexponential factor values calculated for different models are uniform (of 
the same type). It is natural for isoeonversional methods to estimate the 
preexponential from the compensational relationship [71] for the preex- 
ponential and activation energy. Application of the Arrhenius equation 
seems to be a sufficient condition for this relationship [72]. As isoeonver- 
sional methods define the activation energy, then, following the compensa- 
tion relationship, a certain activation energy value will evidently comply with 
a single preexponential. The compensation effect parameters can easily be 
obtained as regression line parameters. The set of Arrhenius doublets is es- 
timated by using any procedure for kinetic parameters based on the explicit 
use of the model by variation of its form. We have applied this method in 
[73] and demonstrated its adequacy for model data. The method proposed 
for preexponential factor estimation can be applied when one kinetic curve 
is used for calculations [11, 31, 32]. This method does not contradict the 
complementarity nature of the formal model and preexponential factor, as 
it is determined independently in terms of the activation energy rather than 
in term of the complementarity description components (which is impossible 
on theoretical grounds). Thus, the first of the disadvantages of the isocon- 
versional methods can easily be overcome. The ease is more intricate as far 
as the second disadvantage is concerned, this being the sometimes en- 
countered dependence of the activation energy on the transformation de- 
gree. It was observed, for instance, in [66, 74-77]. The demonstration of the 
activation energy as independent of the transformation degree can be found 
in [66, 78]. The nature of this dependence can be understood if it is recalled 
that it has been observed [79] during use of the isoconversional method to 
process model data complying with a system of two parallel competing reac- 
tions. It should be remembered that Eq. (1) underlying the isoconversional 
methods is the equation of a single-stage chemical reaction and its use to 
describe complex reactions is limited, as in this case the state of the system 
cannot be characterized by two quantities, T and a [80]. Complex processes 
that may be described by Eq. (1) include formally single-stage processes 
(those with a distinct limiting stage, parallel processes with close activation 
energy values, ete). Criteria for single-stage processes are suggested in [80], 
and may include the criteria for assessing the calculated activation energies 
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put forward in [68]. It is noted in [81] that, if the kinetic curves are similar 
(aft'me), the activation energy is independent of the transformation degree. 
It should be remembered that the affine transformation of nonisothermal 
data, suggested, for instance, in [82], differs in its form from the correspond- 
ing transformation for isothermal data [83]. As a complex process violates 
the affinity of the curves plotted for the different heating rates, it can easily 
be shown [29] that the dependence of the activation energy on the transfor- 
mation degree is a trivial consequence of the affinity violation. In view of 
this, the substitution [84, 85] of basic Eq. (1) by an alternative form, taking 
account of E vs. a in explicit form, cannot be admitted as sufficiently jus- 
tified for two reasons. The first is that this relationship does not reflect the 
change in the activation energy with change in the process mechanism. It 
only represents a change in the mean activation energy of reactions that 
proceed at some instant corresponding to a definite transformation degree 
[86]. The second reason for the inadmissibility of substituting Eq. (1) is that 
this equation can fully account for the dependence of E and a [29]. 

An understanding of the reasons why the activation energy depends on 
the transformation degree suggests the ways by which this undesirable effect 
can be eliminated. It is natural in this case to use the model of parallel reac- 
tions, as was the case in [87, 88] to describe the dehydration of calcium oxa- 
late monohydrate. Taking account of the inevitable difference in the 
specimens and the approaches used by the authors of [87, 88] to describe 
the dehydration of calcium oxalate monohydrate, it should be noted that the 
values of the kinetic parameters are very close and the models of the paral- 
lel processes are uniform. This kind of agreement of independent results is 
certainly a strong argument for the approaches suggested in [87, 88] and the 
approach in [89], developed to describe a complex process, which relied on 
the isoconversional principle [81, 89]. Therefore, the second limitation of 
isoconversional methods, when the dependence of the energy on the trans- 
formation degree is sometimes observed, should not in fact be ascribed to 
these methods, as it is due to the complex behaviour of the process and can 
be eliminated by describing the process within the complex reaction model, 

Thus, if the advantages of isoconversional methods and of the ways of 
overcoming their disadvantages, are taken into account these methods are 
for the moment most efficient. Even if isoconversional methods do not pro- 
vide reliable kinetic parameters, at any event they do reveal the complex na- 
ture of the process, which itself is information about its mechanism. 

Isoconversional methods continue to develop. Thus, in [90] an ap- 
proximation of the temperature range is proposed that is more accurate 
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than Doyle's approximation [91]. It is pointed out in [90] that the calculation 
of kinetic parameters by using this approximation is simpler than the correc- 
tion method suggested by Flynn [12]. Reich and Stivala have suggested a 
computer-aided version of the isoconversional method [92]. A particular 
version of the isoconversional method is considered in [93]. However, it re- 
quires a complicated heating programme to implement isokinetic conditions 
(da/dt = const). Cycling heating [9, 68] makes it possible to employ the 
isoconversional method for tests with one and the same specimen. Ozawa's 
conception of generalized time [94], whose calculation requires that the ac- 
tivation energy be determined independently of the process model forms, is 
closely bound up with isoconversional methods. By using generalized time, it 
is possible in nonisothermal kinetics to go over to a single independent vari- 
able and to process kinetic data in a form similar to isothermal [95]. The in- 
troduction of generalized time will also extend the applications of 
Friedman's method [96]. 

The determination of invariant kinetic parameters in [97] is intimately 
bound up with the isoconversional method. Following the approach in [97], 
the kinetic parameters of a process are estimated as an intersection point of 
compensation lines obtained for different heating rates. Thus, in [98] it is 
found experimentally that invariant kinetic parameters coincide with the 
values obtained in [70] by using isoconversional methods. Moreover, this 
coincidence has been demonstrated theoretically (for model data) in [73]. A 
close connection between the method of invariant kinetic parameters and 
isoconversional methods also stems from the coincidence of the activation 
energies calculated by this and Kissinger's method. It is shown in [71] that 
the method of invariant kinetic parameters transforms the Arrhenins equa- 
tion as 

da I dT = A I fl exp (-~" I R:~ ) exp (-E~ I R:~ ) exp (-E~ I R T) j~ (a)  (3) 

where " refers to invariant quantities; i andj  are the ordinal numbers of the 
heating rate fl and formal model f(a). The isoparametric (invariant) 
temperature ~ for the known heating rate fit is determined as the abscissa 
of the intersection point of the Arrhenius lines corresponding to formal 
models of the, f(a) set. It is evident that the value of ~ so determined is in- 
dependent of the formal model J~(a). On the other hand, it is shown in [99] 
that the temperature Tm complying with the differential kinetic curve maxi- 
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mum is not dependent on ~(a) either. Therefore, it may be assumed that 
= Tm.t [71]. With regard to the equality, the product of the two last ex- 

ponents in (3) is unity, while Eq. (3) proper becomes 

A A 

d a / d T  = A / fl~ exp ( - E  / RT ~  ) fy (a ) 

Hence, the Kissinger equation 

d [ In (fit / TmZg )] / d (1 / T~ ) ~- - f ~ / R T  (4) 

can easily be obtained (cf. transformation in [48]). 
Identity (4), being proved, allows two conclusions. First, (4) indicates 

that the Kissinger equation can be obtained without any assuptions on the 
form of the formal model and is a particular case of the general equation (3) 
underlying the method of invariant kinetic parameters. Second, taking ac- 
count of (4), it may be stated that the method of invariant kinetic 
parameters can be regarded as isoconversional in the same measure as can 
the Kissinger method. 

An apparent compensation relationship, whose parameters are calcu- 
lated with the use of a wide set of formal models J~(a) by varying j, is a 
generalized description in the method of invariant kinetic parameters. The 
simultaneous use of several compensation relationships obtained for dif- 
ferent heating rates, in the method of invariant kinetic parameters, permits 
the determination of both the activation energies and the preexpouential 
factors, without assuming a particular form of the model. It is worth em- 
phasizing that the application of the apparent compensation effect proposed 
earlier [73] allows an unambiguous estimation of the preexponential factor 
consistent with the activation energy calculated by the isoconversional 
method. The common calculation procedure in the isoconversional method 
and that of invariant kinetic parameters gives rise to a similar IKP solution 
technique. This is supported in particular by the equivalent values of the 
kinetic parameters estimated by these approaches [73]. The potentialities of 
the method of invariant kinetic parameters and their connection with 
isothermal quantities in particular are carefully analysed in [100]. 
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Conclusions 

In conclusion, we shall highlight the main points from our work and for- 
mulate some recommendations that we hope may be of practical use in the 
IKP solution. 

The application of the methodology of unambiguous description (dis- 
crimination) provides, in the general case, an ambiguous IKP solution (see 
the first part of this review). In this connection, we think it impossible to use 
the methodology of unambiguous description in nonisothermal kinetics, be- 
cause of the strong dependence of the kinetic parameters calculated with 
nonisothermal data on the form of the model. It is possible, however, to use 
it for the IKP solution from isothermal experimental data, as in this case the 
kinetic parameters slightly depend on the form of the model. 

It is advisable to apply the complementarity methodology (generalized 
descriptions) necessary to obtain reliable kinetic parameters in order to 
solve various problems in practice. This methodology is universal, i.e. it can 
be used in both iso- and nonisothermal kinetics. 

If the arguments against the methodology of unambiguous description 
and for the complementarity methodology have not convinced the reader, 
the authors advise that particular attention be paid to the necessity of the 
correct processing of experimental data. If we have managed to convince the 
reader in favour of the complementarity in the IKP solution, then it is worth 
emphasizing once again that the kinetic parameters calculated in terms of 
generalized descriptions by one kinetic curve can only act as its reliable 
geometric characteristics. Estimation of the kinetic parameters in terms of a 
generalized description, based on several kinetic curves, will provide 
evidence as to whether the reliable geometric characteristics are reliable 
physico-chemical characteristics of a process. 
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Zusammenfassung -- Der zweite Teil dieses Rfickblickes beschiftigt sich mit 
L6sungsverfahren ffir das inverse kinetische Problem (IKP) basierend auf verallgemeinerten 
Beschreibungen der Prozesse. Eine Anwendung dieser Verfahren wird als alternative 
Niiherung der L6sung des IKP betrachtet. Es wird gezeigt, dass die Grundlage dieser 
Niherung in der Methodologie der Komplement~rit~t besteht. Verschiedene Arten yon 
verallgemeinerten Beschreibungen, ihre Vorzfige und Mingel werden besprochen. 
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